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Section Ⅰ - Inspiration, Investigation, Introduction: 
Artificial neural networks (ANNs) have been the subject of my curiosity and passion for a number of years now. For school and                      
independent research projects I have programmed and licensed optimisation and multi-class classification ANNs for, among               
others, predicting temperature-stress conditions in the elderly, small vehicle autonomy and teaching assistants/aids and have               
been invited to local universities to speak on the topic. Recently, I founded a Code Club in my school to teach interested                      
students the basics of ANNs . By undertaking this investigation I was looking to educate my peers, in an applied sense, the                     1

mathematics of training ANNs with pre-university mathematics as well as to deepen my understanding of MCC ANNs for a                   
career as a computer vision engineer.  
 
This investigation aimed to achieve these goals by modelling the function relationship between ​log loss and the ​training                  
iterations of three-layer feed-forward artificial neural networks (ANNs) with the purpose of multi-class classification (MCC). I will                 
conduct this investigation in three sections (sections Ⅱ-Ⅳ). First, I will analyse the mathematics and properties of                 
forward-propagation​, ​backpropagation and ​gradient descent that make the training of three-layer neural networks possible. I will                
then apply this understanding by manually calculating one training iteration of a three-layer MCC ANN using the hypothetical                  
example of a 2 by 2 pixel image classifier. Finally, by programming a three-layer handwritten digit classifier with the                   
mathematical basis established in section Ⅲ, for 28 by 28 pixel images, I will model the association between the network’s log                     
loss over training iterations in the domain of the first 500 training iterations of the networks as it is trained on a real-world                       
open-source dataset. Conducting the investigation, I have produced the relation of log loss ( ) and training iterations ( )                  

of: . 
 
Artificial neural networks are the cornerstone of machine learning - itself a subfield of artificial intelligence - enthralled by the                    
quest for a ‘universal learning machine’ as first described by prolific British mathematician Alan Turing in the early 20th century.                    
Feed-forward artificial neural networks are computer programs, inspired by the biological neural networks that constitute organic                
brains (refer to figure 1.1). They ‘learn’ to perform tasks by repeatedly considering examples (in supervised learning) without                  
being pre-programmed with task-specific rules (“Artificial Intelligence”).  

 
Figure 1.1:​ Comparison between a biological neuron and an artificial neuron – a ​perceptron 
Source: ​https://towardsdatascience.com/from-fiction-to-reality-a-beginners-guide-to-artificial-neural-networks-d0411777571b 

  
Classification ANNs are a form of ANN wherein the network learns to classify inputs into ‘classes’ (types/items) based on                   
patterns present in data often indistinguishable by a human. An example of an application of this form of ANN is computer vision                      
- wherein the network learns to identify the item present in an image (i.e. identifying an image of a cat distinct to an image of a                          
dog). Multi-class classification ANNs have been increasingly prominent in this past decade with the property of being able to                   
classify which of greater than two possible classes an image item belongs to (i.e. distinguishing a cat from a dog from a parrot).                       
These ANNs have ever-increasing applications to society across a variety of fields including medical scan diagnoses in                 
healthcare and autonomous vehicles in engineering.  
 
MCC ANNs are based heavily in the mathematics of partial derivatives and matrix operations. They are often likened to                   
universal function approximators as they mathematically achieve an optimal system for item classification by altering matrices of                 
weights and ​biases between ​nodes​. The log loss function is the key driving calculation of neural network training. It computes                    
the error of the network and represents the difference between the network’s current set of weight and bias matrices from the                     
ideal matrices for classification with 100% testing accuracy. The value of log loss it computes thus reduces over the training of a                      
network - as training accuracy increases. This relation between training iterations (cycles of forward and backpropagation) and                 
log loss of a network is the relation whose function I wish to model.  

1 The repository of code provided to students of my Code Club consisted of a mix of internet and self-developed ANN programs 
linked here: ​https://github.com/Kumagi360/SCIC_ModellingUnit 

https://towardsdatascience.com/from-fiction-to-reality-a-beginners-guide-to-artificial-neural-networks-d0411777571b
https://github.com/Kumagi360/SCIC_ModellingUnit


 
Section Ⅱ - MCC ANN Terminology and Mathematical Background 
Theory - Network Architecture: 

 
Figure 2.1:​ General Architecture of an MCC ANN  
Source: Self-drawn on ​https://docs.google.com/drawings 
 
All MCC ANN architectures consist of components that can be visually demonstrated as a network of interconnected parts,                  
similar to the networks of neurons found in biological brains, that dictate the flow and manipulation of data from raw input to                      
processed output of the network (refer to figure 2.1). Firstly, ​layers of nodes represent neurons that receive inputs together in a                     
biological brain. The first layer of inputs is called the ​input layer ​( ), the last layer is the ​output layer ( )                     
and all layers in between (in figure 2.1, only one) are called ​hidden layers ​( ). In general convention, all node                    
indexes associated with the input layer have the subscript ​n​, all node indexes associated with the first hidden layer the subscript                     

and the nodes in the output layer have the subscript . These subscripts are placeholders for the index of the number of                       
nodes being referred to and can be replaced by the number of the node to specify a vector of that node. ​The superscript                        
exclusively represents the output layer of a network, while the superscript , as used extensively in formulae, can                  

represent any layer in a network. Each layer holds a ​dot-product sum vector (seen as ​and ) and a ​post-activation                     2

vector (seen as ​and ) that contain processed data. Secondly, ​weight matrices (seen as and ) connect each                  
node in a layer to each node in the next layer. This is representative of the random strength of connections between neurons in                       

a brain over synapses (gaps between neurons). Finally, ​bias matrices (seen as and ) contain values, unrelated to the                  
input image, that are used to ensure a network learns optimally . It is these matrices of weights and biases that are tuned over                       3

training iterations to allow the MCC ANN to ‘learn’ patterns within images.  
 
Theory - Forward Propagation: 
Forward propagation refers to the forward transfer of data through the network - from the input layer inputs ( ) to the final                      

outputs ( ). First, the input layer receives a ‘flattened’ image as a vector, where each row is a data representation of a pixel of                        
the image called a ​feature​. To progress to the first of the hidden layers of the network, a dot product multiplication of this input                        
feature vector with the intermediate matrix of weights takes place and is added element-wise to the intermediate bias matrix.                   

This, the dot product sum vector ( ), ​is demonstrated in figure 2.2 below and acts on every node in a layer. It follows the                        
formula of: 

 
Where:  represents the number of nodes in layer  

 represents the number of nodes in layer  

 represents a dot product sum vector of layer  with the number of rows as nodes in layer   

 ​represents a bias vector between layers and  with the number of rows as nodes in layer  

2 A ​vector​ in ANNs terminology is a single-columned matrix. 
3 The purpose, impact and mathematics of bias matrices on training is complex and out of the scope of this investigation. 

https://docs.google.com/drawings


represents the weights matrix between layers and  of dimensions  by  

represents the activation vector of layer  with the number of rows as nodes in layer  
 
The dot product sum vector is passed to an activation function of the layer – wherein based on the function, each vector element                       
has a new value and the vector is now called the post-activation vector. There are a number of commonly used activation                     
functions including sigmoid (logistic) functions and reLU functions used to constrain the range within which the dot product sum                   
vector numbers lay. The choice of function used at each layer is governed by the objective of the network (efficiency, maximal                     
accuracy, etc). This investigation will make use of sigmoid activation for the input and hidden layers. In any case, the                    
post-activation vector has the same dimensions as the dot product sum vector and acts as the output vector of the layer. This is                       
also demonstrated in figure 2.2 below.  
Activation functions follow the formula: 

 
The sigmoid activation function of the hidden layer follows the formula: 

 

Where:  ​represents the post-activation vector with rows - the number of nodes in layer  

 ​represents the dot product sum vector to be ‘activated’ with  rows - the number of nodes in layer  
 

 

Figure 2.2: ​Model of the Working of a Single ‘Node’ (Perceptron) -  
Source: Self-drawn on ​https://docs.google.com/drawings 
  
This post-activation vector output then effectively acts as a new input feature vector to the next layer. This dot product and                     
activation process repeats until the output layer - wherein each node’s output value represents a possible class of the image.                    
Traditional classification ANNs then predict the class of the original input by selecting the class of the node with the highest                     
value. The concept of a softmax activation function , however, is that the output layer follows instead the unique softmax                    
activation function, which normalises the inputs of the output layer such that its outputs are each between zero and one, and all                      
outputs add up to one, instead of being arbitrarily wild. This serves the unique purpose of providing classification as a probability                     
– where the output value of each node is at a scale such that a node returning 0.4 would have a likelihood for its class twice as                           
high as another node returning 0.2. The softmax function will be used in this investigation to increase the ease of drawing                     
conclusions from changes in the output data across iterations. The softmax activation function of the final layer ( ) follows                   
formula: 

 

Where:  ​represents the final post-activation vector with rows - the number of nodes in layer  

 ​represents the final dot product sum vector to be ‘activated’ with  rows - the number of nodes in layer  

represents the sum of every element ( ) of the  ​vector to the power of  
 
A network gets trained through the process of backpropagation in gradient descent, wherein the weight and bias matrices                  
between each layer get updated incrementally to reduce the ​loss of the network. The loss function that a network using Softmax                     
activation in the last layer uses is called the ​log loss function​ and the ​log loss​ it calculates and is given by the function below: 

 

https://docs.google.com/drawings


Where: stands for error (synonymous with loss) and represents the log loss of the network 

 stands for the target value of each element ( ) of the output softmax-activated, post-activation vector ( ) 

 ​represents the final post-activation vector with rows - the number of nodes in output layer  
 
Subsequently, log loss is a value for the total inaccuracy of an MCC ANN and is the negative sum of the elements in the loss                         
vector. This loss vector is the multiplication of the scalar target values ( ) with the log (base-10) of their corresponding actual                     

output values ( ) for every element in the post-activation vector (every output node). The target values are supplied during                   
‘supervised training’, where each image being classified is ‘labelled’ for the network to see the correct output node values after                    
completing forward propagation of the image - to allow it to calculate log loss. An optimal network would have a log loss value of                        
zero - meaning it can identify the class of any unlabeled input image of a type it has been trained on with 100% accuracy and                         
without requiring further backpropagation to train the network.  
 
Theory - Back Propagation: 
Each individual weight and bias in the weight and bias matrices of the network is then tuned in a loss-reducing direction through                      
the process of ​backpropagation​. Backpropagation entails the concept of tuning the weights heavily responsible for final log loss                  
more than ones which don’t contribute as much to loss. This is based on extensive use of the chain rule and vector math to                        
calculate the partial derivative of the log loss to the preceding layers’ weight and bias matrices. Partial derivatives in ANNs are                     
the measure of the change the elements of these matrices induce in the next layer as a result of a small change in itself. This                         
matrix is multiplied by the conventional ​learning rate variable scalar of 0.1 (will be elaborated in sectionⅣ) and the scalar of -1                       
to prepare the ​updating matrix​. Backpropagation itself is the critical element of ​gradient descent - the process by which the                    
network reduces its loss to increase its classification accuracy. Below is the formula for preparing the updating matrix for                   

adjusting the final weight matrix . It is the obtaining of the partial derivative of weights and bias matrices with respect to final                       
loss to obtain updating matrices that poses the mathematical challenge of ANNs and is unique for every MCC ANN architecture. 

 
Where: stands for error (synonymous with loss) and represents the log loss of the network 

 stands for the learning rate variable of the network - almost always given a value of 0.1 

 ​represents the change in loss with respect to a change in the weight matrix ( ) 

 represents the updating matrix for the weight matrix ( ) 
 
By recurring the forward and backpropagation process over several hundred training iterations over several hundred training                
examples, a network can effectively tune its weight and bias matrices to achieve the highest possible accuracy determining the                   
class of an unlabeled image. The steps of backpropagation change according to the architecture of a network, thus to model                    
backpropagation’s impact on log loss of a three-layer MCC ANN over the extent of 500 training iterations - the mathematical                    
steps for backpropagation of a three-layer MCC ANN with conventional properties will be investigated and programmed - from                  
which the model can be derived.  
 
Section Ⅲ - Example MCC ANN Training Iteration and Log Loss Reduction Mathematical Justification: 
Background and Architecture: 
To model log loss over training iterations of an MCC ANN, the backpropagation of a network can be mathematically                   
demonstrated. For this investigation, with the goal of modelling the log loss over 500 training iterations of a usable real-world 28                     
by 28 pixel handwritten digit classifier, the working of completing a single iteration would far exceed the page limit of this                     
investigation given (28 x 28 = 784) 784 nodes and a bias in the first layer itself - meaning a minimum dot product of 785 terms                          
even if the hidden layer contained only a single node. Furthermore, each pixel would have a grayscale value of 1 to 256 -                       
meaning hand-written multiplication would be utterly impractical.  
 
Instead, a hypothetical and far simpler (however in the real world, useless) 2 by 2 pixel pattern classifier using only black (1) or                       
white (0) pixel values will be used to demonstrate the steps of backpropagation that is implemented in similar MCC ANNs. This                     
2 by 2 pixel classifier should be able to distinguish between the pattern of a forward-slash, backslash and a fully blacked-out                     
image (refer to figure 3.1 below). Arbitrarily, the ​forward slash ​(class one) input will be used to demonstrate this network as the                      
labelled piece of training data. 



 
Figure 3.1: ​Classes of Identification with Input and Output Target Vectors  
Source: Self-drawn on ​https://docs.google.com/drawings 
 
While this identification could easily be hard-coded - the steps of the mathematics for training a network to distinguish these is                     
identical to the steps for training a larger network to classify a larger and more detailed image. The difference is matrices of                      
significantly larger dimensions result in an incredible increase in the number of matrix elements to be tuned individually - an                    
incredible increase in the number and complexity of calculations, viable only for a computer. Hence, investigating the                 
mathematics of the backpropagation of this network is feasible for modelling the backpropagation and subsequent log loss trend                  
of the larger, real-world applicable net to come. Figure 3.2 below is the architecture which will constitute this MCC ANN - 4 input                       
layer nodes (four features - given the four pixels in the input image), 2 hidden layer nodes and 3 output layer identification                      
classes. The variables shown below will be referenced throughout the math to follow. 

 
 
Figure 3.2: ​Architecture and Mathematical Notation of 2 by 2 pixel classifier MCC ANN to be used 
Source: Self-drawn on ​https://docs.google.com/drawings 
To run a training iteration of this architecture, the weight matrices must be initialised with random values and the bias matrices                     
by values of 0 - as per general ANN convention. Below are the starting weight and bias matrices of the 4 weight and bias                        
matrices of this network.  
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Training Iteration One - Forward Propagation: 

The first step of forward propagation is taking the dot product of the input layer vector ( ) and the weight matrix ( )                      
connecting the input layer ( ) to the hidden layer ( ) and adding the resultant vector element-wise to the                  

corresponding bias vector ( ). The result will be the dot-product sum vector of the hidden layer ( ) with as many rows                     
as nodes in the hidden layer - therefore a 2​x​1 vector.  

 

This dot-product sum vector ( ) then must be put through the sigmoid activation function of the hidden layer to become the                     

post-activation vector of the hidden layer ( ). 

 

The dot-product sum vector of the output layer ( ) must now be calculated using the same process as previously, making use                     

of the weight and bias matrices between the hidden and output layer ( ).  

 

This dot-product sum vector ( ) must then be put through the output layer’s softmax activation - normalising the sum of the                     
elements to 1 and allowing each element to act as an individual probability of the input’s class. 

 
 
 
 
 
 
 
 

This output can be verified as the elements of the post-activation vector ( ) are each between 0 and 1 and add up to 1.  
 
 
 

The log loss of this network can now be calculated. Having completely random weight and bias matrices, this first log loss of the                       
network is almost never ideal (0) and often misclassifies the input - as the network has here. The input example is of class one -                         

with a target for the first vector element ( ) of 1 , with the other elements having a probability of 0. However, the network                        
believes it has been shown an input of class three, with the highest probability being .429 on class three - with a much lower                        
probability for class one of 0.297. Computing for log loss ( ) will quantify this inaccuracy as a single universal value: 

 
This value, 0.527, is the starting log loss of the network. 
 
Training Iteration One - Backpropagation:  
To tune the weight and bias matrices of the MCC ANN to reduce this log loss, the impact of a change in each weight and bias                          
matrix/vector on the final error must be understood by taking partial derivatives using the chain rule to preceding layers.  

The first of these differentiations must be of the impact of a change in the final weight matrix ( ) on                    
log loss ( ) to calculate the update of the final weight matrix.  



 

The differentiation of the first term ( )is far outside of the math HL syllabus. It is given in appendix 1                    
and was ​not completed by me. The differentiation of this term dictates that the change of log loss with                   
respect to the dot-product sum vector equals the difference between each output layer nodes’              

post-activation output ( ) and target value ( ).  
This resultant vector of values will be useful in future backpropagation and can be assigned to a variable that, according to                     

convention, will be called the ​backpropagating error ​and given the symbol delta ( ).  
  

This differentiation of the second term is trivial given the bias vector ( )             

acting as a constant and the multiplication of the weight matrix ( )            

and the post-activation vector of the (last layer) hidden layer ( )           

allows the change of the dot-product sum vector ( ) to be simply the post-activation vector of the hidden layer ( ).  
 
As a result, the updating matrix for the matrix of weights connecting the hidden layer to                

the output ( ) can be calculated as on the right. 
 
To multiply these vectors, the transpose (reversal of dimensionality) of the post-activation vector will be used. This is as,                   
conventionally, multiple training examples - a ​training batch - are given to the network at once and thus the hidden-layer                    

post-activation matrix ( ), the hidden-output weights matrix ( ) and the second (final) post-activation matrix ( ) must                
be transposed to ensure the network trains each example as an individual vector. While this network is being justified here by                     
running a training batch of only one example at a time, the transposing of these matrices to allow for compatible matrix                     
multiplication dimensions is still necessary.  
 

 
 

 

 

Likewise, the update vector for the bias vector connecting the hidden layer to the output ( ) can be calculated similarly. 
  

The differentiation of the dot-product sum vector from log loss term ( ) is common to               
the differentiation conducted previously to find the updating matrix of the hidden-output            

layer weights - the vector of backpropagating error ( ). The differentiation of the bias              

vector from the dot-product sum vector ( ) is once again trivial given the constant and               

exclusive effect of the weight matrix ( ) and previous post-activation vector ( ) on the dot-product sum vector.  

 
Thus, the update of the weight matrix and bias vector between the hidden and output layers have been calculated. They will be                      
used to update the current weight and bias matrices at the conclusion of backpropagation. This brings us to the                   
backpropagation of error to the weight and bias matrices between the input and hidden layers to find their respective update                    

matrices ( ).  



 
The chain rule once again allows the differentiation of log loss with respect to the               

weight matrix ( ) to be split into multiple, differentiable expressions.  
 
The first term of the differentiation is error with respect to the post-activation vector of the hidden                 

layer ( ). Conceptually, this term must be a scalar to represent the total change in log loss                 
as each term in the post-activation vector is used in the next dot product - in turn affecting the                   
final log loss. This is achieved through the differentiation with the overarching sigma that adds each element of the outcome                    
matrix as given in full in appendix 2. 

The second term ( ) does not require the chain rule to be            

differentiated. The post-activation vector ( ) of the hidden        
layer, being the output of the activation function, ( )         
renders this partial derivative to simply be the derivative of the           

activation function with the dot-product sum vector of the hidden layer ( ).  

The final term ( ) is an identical differentiation to that of the dot-product sum vector with respect to its                   
corresponding weight matrix of the hidden-output layer. The only difference is that it now applies to the                 

dot-product sum vector of the hidden layer ( ) with respect to the weight matrix of the input-hidden layer (                  

) - resulting in the post-activation vector       
of the input layer: the input vector ( ).  
Hence, the input-hidden weight matrix update      
matrix can be calculated as: 

 

 

 

 
It is useful to define another backpropagating error        

variable ( ) to represent the error with respect to         
the dot-product sum vector of the hidden layer.  
 
 



 
 
 

 
 
Once again it can be used in finding the update matrix for the input-hidden              

bias matrix ( ).  
 

 
Now, with the update matrices for both sets of weights and biases (input-hidden and hidden-output), the network can be trained                    
by updating the weights and biases. The final component is the ​learning rate variable , denoted ϵ, which regulates the change in                     4

the loss-reducing direction that each matrix can take in a single iteration. Conventionally, it is always 0.1 to prevent overstepping                    
ideal weights and the overfitting of the network to a particular training example. It will be used as 0.1 throughout this                     
investigation. To update a matrix, ​gradient descent​, the name of this conventional method of updating weights and biases to                   
minimize loss, calls for the subtraction of the product of the learning rate and updating matrix from the original matrix.  
 

 
 

 
 

 
 

 
With the updating of these matrices, one iteration of network training - one forward and backpropagation has been completed.                   
The network would now have moved in a log loss-reducing direction closer to achieving high accuracy classifying the inputs. To                    
verify this statement of ANNs, and the validity of the math of this backpropagation, the next forward propagation of this network                     
can be calculated to compute the new log loss of the network after the single training iteration.  
 
Training Iteration 2 - Forward Propagation: 

 

 
 

 
 

4 The purpose, impact on training and mathematics of unconventionally adjusting the learning rate is complex and out of the 
scope of this investigation. 



 

This output can be verified as the elements of the post-activation vector ( ) are each between 0 and 1 and add up to 1.00 in 3                          
significant figures (although raw 1.001 due to 3sf rounding in final vector).  
 

 
 

Hence, the log loss has reduced significantly over a single training iteration from 0.527 to 0.447. This 15.2% decrease                   
in log loss over a single training iteration has validated that the backpropagation of this network adjusts its weights                   
and biases in a log-loss reducing direction and thus has increased the accuracy of the network. This increase in                   
accuracy can also be seen in the difference between the previous probability for the correct class one output of 0.297 as                     
opposed to the increased 0.357 probability after a training iteration. Although the network still does not identify the class of the                     
image correctly, as class three still has the highest probability of 0.387, the difference between the class one’s probability and                    
the incorrect class three probability has greatly reduced. On the untrained network the difference was 0.132 (0.429 - 0.297),                   
while after only a single training iteration the difference reduced 77.3% to 0.0300 (0.387 - 0.357). This being a successful                    
demonstration of the mathematics of a training iteration’s impact on log loss, it can be understood that MCC ANNs take                    
hundreds, if not thousands, of training iterations across a multitude of training examples to achieve maximal accuracy on any                   
input image to classify. Hence, the 28 by 28 pixel handwritten digit classifier network that will be used to model the trend of                       
decrease in log loss over the first 500 training iterations can be programmed using the validated math of this small-scale 2 by 2                       
pixel classifier MCC ANN. 
 
Section Ⅳ - Modelling Log Loss Over 500 Iterations of Training 28 by 28 Pixel Handwritten-Digit Classifier: 
Using the mathematics of forward and backpropagation completed and validated above, a computer program can now be                 
written to train an MCC ANN for 500 iterations, keeping track of log loss following each training iteration. To produce results                     
useful in the real world however, the MCC ANN architecture will be changed from a 2 by 2 pixel forwardslash, backslash and                      
blacked-out classifier (4 node input) to a 28 by 28 pixel handwritten digit classifier (784 node input). Although the layers will be                      
of different sizes, and thus all matrices of different dimensions, the flexibility of the mathematics of the previous section carries                    
through and forms the basis of training this, larger, network. 
 
This is a network that can be effectively used in the real world to transcribe student hand-written work to document text for                      
easier exemplar marking or distribution. This is a concept that is becoming ubiquitous in this decade of machine learning                   
augmentation - applying to a wide range of handwritten text to digital text applications. To train this network, an MNIST                    
open-source dataset will be used. This dataset contains thousands of labelled example images of 28 by 28 pixel handwritten                   
digits (digits 0 to 9), and is simple to implement in a Python script.  
 
Hence, having extensive experience in Python programming, a simple-to-embed Python training dataset and the mathematics of                
ANN MCC training - I will be using Python with a handful of Python add-on software libraries to construct a neural network                      
architecture to be trained to classify 28 by 28 pixel images containing handwritten digits - keeping track of its log loss over the                       
first 500 iterations of its training. Like the 2 by 2 pixel classifier, the network will have a three layer architecture with 784 nodes,                        
256 nodes and 10 nodes in the layers respectively. The training batch size will, as per convention, be 128 examples instead of                      
only 1 - the transposing of the three key matrices mentioned in sectionⅢ allows this ​batch training to taken place - allowing for                        
500 iterations of training to have a shorter execution time duration. It also means the log loss value of the network will be the                        
sum of the log losses of the individual training examples in a training batch. Hence, the resultant model will only be applicable to                       
any MCC ANN with a three-layer architecture and 128 training examples per training batch. This is a common architecture of                    
MCC ANNs and hence the resultant model will be applicable to a large range of real-world applications.  
 
This architecture will be the framework for 10 trials of the network (10 independent networks - each starting completely                   
untrained). Each trial will have different randomly-assigned starting weights and biases - and thus a different starting loss. Given                   
the similarity in architecture, however, each trial will likely have similar best-fit equations for log loss over training iterations -                    
whose average will provide an accurate modelling equation for log loss over training iterations.  
Figure 4.1 below is a documented excerpt of my 224-line Python program using the mathematics derived in section Ⅲ to                    
construct and train a 28 by 28 pixel MCC ANN to be classify handwritten digits.  



 
Figure 4.1:​ Excerpt of Initialisation of Network Architecture and Parameters Using ‘​Tensorflow’​ Python library  
 
Figure 4.2 below is the graph produced by plotting the log loss over training iterations for each training iteration and the                     
subsequent best-fit line of the first trial 28 by 28 pixel MCC ANN.  

 
Figure 4.2:​ Trial 1 Network : Log Loss Over 500 Training Iterations Scatterplot and Best-Fit Line 
 
Figure 4.3 below is the table of 10 trials of this network architectures’ best-fit line equations relating log loss over 500 training                      
iterations. These quartic best-fit lines were calculated by a Python library called ​‘Matplotlib’ having been given the network’s log                   
loss value at the end of every training iteration. The difference between the equations is a result of each trial of the network                       
having different randomly-assigned initial weights and biases. The average of each term of the quartics together reliably model                  
the average relation between the first 500 training iterations and log loss of the classifier.  
 
Figure 4.3:​ Equations of Best-Fit Line per Network Trial and Processed Average - Split by Equation  Degree Term 

 
Figure 4.4 below is the graph produced by plotting log loss over training iterations for all 10 trials (each trial in a different colour).                        
It is then superimposed by the average best-fit line of the 10 trials as calculated by figure 4.3 above. This visualises the log loss                        
values over training iterations of each trial network and thus shows that the calculated average best-fit line captures the trend                    
well.  



 
Figure 4.4 :​ 10 Trials of Log Loss Plots Superimposed by Average Best-Fit Line for Log Loss over 500 Training Iterations  
 
The final outcome of this investigation was the identification of the equation relating log loss to first 500 training iterations of an                      
MCC ANN with conventional parameters and a three-layer architecture. By initially covering the premise of neural networks and                  
deconstructing the concepts and mathematics of a general MCC ANN, I was able to develop and justify by hand, the                    
mathematical training steps for a three-layer 2 by 2 pixel classifier. These steps used pre-university mathematics structured in a                   
manner that my peers can understand the meaning behind the steps. This math holds true for all similar three-layer MCC ANN                     
architectures and hence the function aiming to be modelled by this investigation was chosen to be of a larger MCC ANN with a                       
real world application. This 28 by 28 pixel handwritten digit classifier was programmed using the investigated mathematics and                  
allowed the network’s log loss to be recorded over 500 training iterations. By creating a program, 10 trials of the network could                      
easily be conducted to account for random weight and bias matrices affecting starting log loss values.  
 
The average of the 10 independent best-fit lines yields the final model. Applicable to any MCC ANN with three-layers using (the                     
conventional) sigmoid and softmax activations, a 128-example training batch size and a 0.1 learning rate, the final calculated                  
equation relating log loss to the first 500 training iterations is: 

 
The implication of this equation is primarily the ability to visualise the training ability and trend of this architecture of MCC ANN.                      
This, in turn, fulfills my goal of demonstrating in an applied sense the training of an MCC ANN to those who are otherwise                       
uninitiated in ANNs. The understanding of the mathematics of forward and backpropagation in a three-layer neural network is                  
the crux of this investigation as it applies to any similar three-layer network. While this investigation has the limitation of having                     
results restricted to the first 500 iterations of a three-layer neural network, it demonstrates in a visual and understandable                   
manner the general training of an MCC ANN. Given the conceptual, mathematical and practical aspects of this investigation, I                   
also now understand these steps to a higher degree. I believe for my future, this investigation is of great significance. As a                      
personal extension, I intend to expand my personal research project on the identification and prevention of temperature stress                  
conditions from a two-layer MCC ANN to a three-layer MCC ANN - whose mathematics and programming completed here will                   
save time and efforts be informed with the understandings gleaned through this successful investigation. Hopefully, upon                
reading this investigation, others may too be inspired and informed to conduct their own MCC ANN-based projects too. 
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Appendix: 
The differentiations of the appendix are in part, or wholly, sourced from ​https://www.jasonosajima.com/backprop​.Understanding             
the differentiations has no impact on understanding the concepts of MCC ANNs, as they have been explained and covered in                    
simple terms through the investigation. They are however useful in understanding how certain formulae have been arrived at.  
 
Appendix 1: 

 
This partial differentiation can be calculated by using the chain rule to break it into the change of log loss with respect to the                        

change of the dot-product sum vector of the final layer ( ) multiplied by the change of the dot-product sum vector with respect                      

to the change of the final weight matrix ( ). The first term is differentiated as: 

 

 
 
Appendix 2: 

 

The chain rule used to solve the first term ( ) once again has much in common with previous differentiations and can be                      

substituted with the previously assigned backpropagating error ( ) and trivially differentiated hidden-output weight matrix (              

) - hence meaning the multiplication of these terms.  
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